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This paper gives a brief introduction to the major areas of work in quantum 
event logics: manuals (Foulis and Randall) and semi-Boolean algebras (Abbott). 
The two theories are compared, and the connection between quantum event 
logics and quantum propositional logics is made explicit. In addition, the work 
on manuals provides us with many examples of results stated in Part I. 

1. I N T R O D U C T I O N  

The study of quantum logic traces to the investigations of Birkhoff and 
yon Neumann  (1936), who suggested that the (closed) subspaces of  a 
(separable) Hilbert space may be ' interpreted as representing the proposi- 
tions pertaining to a physical system. In the succeeding 50 years, much 
work has been done in an attempt to clarify this suggestion. The majority 
of  this work falls in the general category of q u a n t u m  proposi t ional  logics, 
and was studied in our paper: Connections Among Quantum Logics; Part 
I: Quantum Propositional Logics (Lock and Hardegree, 1985). 

Some of the most recent and (we think) most exciting research being 
done today on quantum logic, however, falls in the category of quantum 
event logics, and it is to that work that we address this paper. The work in 
quantum event logics, in a way, goes beyond that in quantum proposit ional 
logics, in the sense that a quantum propositional logic may be obtained by 
considered equivalence classes of  elements in a quantum event logic. The 
importance of studying the underlying level of  quantum event logics is best 
illustrated by the probabili ty theory inherent on all these quantum logics. 
Indeed, many  of the subtleties of  conditional probabili ty in quantum theory 
are obscured on quantum propositional logics: As Foulis and Randall  have 
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shown (Randall and Foulis, 1979), two equivalent events in a quantum 
event logic may produce different conditional probabilities. 

In this paper,  we give brief introductions to the study of manuals and 
the study of semi-Boolean algebras (the two main areas of  research in 
quantum event logics), examine the relations between the two, and illustrate 
the connection of this approach with that of quantum propositional logics. 

2. E M P I R I C A L  LOGIC:  THE STUDY OF MANUALS 

We briefly describe here the foundations of  the work of Foulis and 
Randall on manuals. More detailed descriptions and definitions may be 
found in Foulis and Randall (1979) or Lock and Lock (1984). 

Let M denote a nonempty  set of nonempty sets. The elements of  the 
set ~d are called operations, subsets of  operations are called events, and 
elements of  operations are called outcomes. The set of  all events in M is 
denoted ~(M) and the set of all outcomes in M will be denoted by X. Two 
events, A and B, are called orthogonal, denoted A_I_B, if they are disjoint 
and their union is an event. In addition, two events A, B are called operational 
complements, denoted A oc B, if A and B are disjoint and A u B is an 
operation. Two events A, B are called operationally perspective, denoted 
A o p  B, if there is an event C in ~d such that A o c  C and B oc C. The 
requirement necessary for J to be a manual  is exactly that needed for the 
relation op to be an equivalence relation on the set of  all events: 

Definition. A nonempty set of nonempty sets d is called a manual if 
A, B, C ~ ~(M) with A op B and B oc C implies A oc C. 

A manual  is, then, a collection of sample spaces with (perhaps) some 
overlap of the outcome sets. It is, of  course, precisely this overlap that 
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Fig. 1. The Wright triangle. 
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Fig. 2. The Frazer cube. 
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provides the richness of the theory. An event, in a manual, may have many 
different (but "equivalent") complements. The following two examples of 
manuals will be useful to us later. One can check that the manual condition 
is satisfied in each case. 

Examples. 1. The Wright triangle manual is illustrated in Figure 1. 
Operations are connected by a straight line. Hence, this manual contains 
three operations, each of which consists of three outcomes. 

2. The Frazer cube manual is illustrated in Figure 2. In this case, the 
operations are the faces of the cube. We see that there are six operations, 
each consisting of four outcomes. 

3. OPERATIONAL LOGIC:  THE LOGIC OF A MANUAL 

The logic associated with a manual ~,  called its operational logic and 
denoted 7r(M), is the set of all events modulo the equivalence relation op. 
We denote the equivalence class containing event A by p(A), i.e., p(A) = 
{B ~ ~ ( ~ ) :  B o p  A). The elements p(A) are called propositions. We define 
the following structure on 7r(~): 0 is defined to be p(~b) and 1 is defined 
t o b e  p(E) for any operation E ~ J .  For any proposition p(A), we define 
p(A)' to be p(C), where C is any event such that A oc C. We say two 
propositions are orthogonal, p(A)• if  and only if AZB, and if 
p(A) • we define p(A)Gp(B)= p(A u B). It is easily seen that these 
definitions are all well defined. 

Theorem. L is an associative ortho-algebra as defined in Part 1 (Lock 
and Hardegree, 1985) if and only if L is the logic associated with some 
manual. 

This theorem makes precise the connection between manuals (or quan- 
tum event logics) and operational logics (or quantum propositional logics). 
To obtain the associated manual in the proof  of the theorem, we construct 
the "manual of finite partitions of unity in L" as follows: It is the set of 
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all finite, nonempty, jointly orthogonal subsets E of L such that 0~ E and 
Y~ E = 1. It can be checked that this construction gives a manual whose 
operational logic is L. The remainder of the proof  of the theorem is easily 
verified. 

In Part 1 of this paper, we indicated that we would postpone many of 
the examples and counterexamples mentioned there until Part 2. They are 
included below. The proof  of  each of these facts is left to the reader. 

Example. Let M1 denote the Wright triangle as shown in Figure 1 
earlier. Then It(M1) is its associated operational logic. 
1. In an associative ortho-algebra, pairwise orthogonal does not imply 

jointly orthogonal. In 7r(Ml), the set {p(a),p(b),p(c)} is pairwise 
orthogonal but not jointly orthogonal. 

2. In an associative ortho-algebra, pairwise compatible does not imply 
jointly compatible. The example given in point 1 above illustrates this 
as well. 

3. In an associative ortho-algebra, the unique Mackey decomposition 
property does not imply orthocoherence. It can be shown that 7r(M~) 
satisfies the UMD property. However, example 1 above indicates that 
~r(M~) is not orthocoherent. 

4. In an associative ortho-algebra, a O b is a local supremum for a and b 
(that is, the supremum in a given block containing both a and b), but 
it need not be a global supremum for a and b. Notice in ~r(sr that 
p(a)<-p({a,f}) and p(b)<-p({a,f}), but p(a)Op(b)~p({a,f}).  

Example. Let M2 denote the Frazer cube as shown in Figure 2 earlier. 
Then 7r(d2) is its associated operational logic. 
1. In an associative ortho-algebra, two elements may be compatible but 

not uniquely compatible. Notice that p({c, d}) and p({b, d}) are compat- 
ible in ~-(M2) since {p(b),p(c),p(d)} is a Mackey decomposition. 
However, p({c, d}) = p({e,f}) and p({b, d}) = p({e, g}), and we see that 
{p(e),  p(f), p(g)} gives a second (different) Mackey decomposition. 

2. There exists a Boolean atlas which is not a Boolean manifold. Let 
denote the set of blocks on 7r(~r Then ~ is a Boolean atlas. Let 
B~ = {p(D):  Dc{c,  d, e,f}} and B2={p(D): Dc{a,  b,g, h}}. It can be 
shown that BI, B2e g3. Note that p({c, e}) =p({b, h}) ~ B1 c7 B2 and 
p({c, d}) =p({g, h}) e B~ c7 B2. However, Ml(p({c, e}), p({c, d})) = 
p(c) ~p(h) = M2(p({b, h}), p({g, h})) and J~(p({c, e}), p({c, d})) = 
p({c, d, e})r  g, h})= J2(p({b, h}), p({g, h}). 

4. S E M I - B O O L E A N  A L G E B R A S  

Semi-Boolean algebras, it turns out, may be viewed as a natural gen- 
eralization of  manuals. In addition, if we construct the logic associated with 
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such a generalization in a similar manner,  we again obtain an associative 
ortho-algebra. 

Again, we give only a brief introduction here. These definitions are 
borrowed and adapted from Abbott (1967). A meet semi-Boolean algebra 
is a meet semilattice in which every principal ideal is a Boolean algebra. 
(Abbott has shown that meet semi-Boolean algebras are equationally defin- 
able as subtraction algebras.) We are interested in meet semi-Boolean 
algebras which satisfy the following additional property. 

Definition. A meet semi-Boolean algebra S is said to have the maximal 
element property if there is a subset M of S satisfying the following condi- 
tions: (i) For all m ~ M and all s ~ S, if m - s then m = s. (ii) For all s ~ S, 
there is an m ~ M with s -~ m. The set M is called the set of  maximal elements. 

A semi-Boolean algebra is defined to be a meet semi-Boolean algebra 
with the maximal  element property. We define a block of a semi-Boolean 
algebra to be a maximal principal ideal (or, equivalently, the ideal generated 
by a maximal element). Notice that every semi-Boolean algebra is covered 
by its blocks, and hence may be viewed as a "pas ted"  family of  Boolean 
algebras (although in quite a different sense from our Boolean atlases of  
quantum proposit ional  logics). Any two blocks are pasted along a common 
principal ideal (and nothing else), which minimally includes the zero 
element. 

In order to continue our efforts to compare manuals and semi-Boolean 
algebras, we wish to define the equivalent notion of the manual  condition 
on semi-Boolean algebras. To that end, we define the following partial 
two-place operation: 

Definition. The relative complement of  a with respect to m, denoted 
m/a, is defined if and only if m is a maximal element and a ~-m. In this 
case, m/a  is the complement  of  a in the Boolean algebra generated by m. 

Notice that a given element a c S may have several different relative 
complements.  We say that two elements a, b ~ S are perspective if they share 
a relative complement,  and we say they are strongly perspective if they have 
precisely the same relative complements. A semi-Boolean algebra S is called 
perspectively coherent if  every perspective pair of  elements is strongly 
perspective. 

Theorem. I. The set of  events of  a manual ordered by inclusion is a 
perspectively coherent semi-Boolean algebra. 

2. A perspectively coherent semi-Boolean algebra in which every block 
is a complete atomic Boolean algebra naturally defines a manual. 

Both of these facts follow directly from the definitions. 
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We have shown that  the operat ional  logic associated with a manual  is 
an associative ortho-algebra.  We may construct  the set of  equivalence classes 
associated with a perspectively coherent  semi-Boolean algebra in a com- 
pletely analogous  way. It can  be shown that the " logics"  obtained in this 
way are, also, associative ortho-algebras.  In  fact, no new logics are obtained 
by considering the set o f  equivalence classes under  perspectivity o f  elements 
o f  a perspectively coherent  semi-Boolean algebra. Hence,  we may think 
of  associative ortho-algebras as the quotient  structure associated with either 
a manual  or a perspectively coherent  semi-Boolean algebra. We emphasize 
here that there are many  manuals ,  and, more generally, many  perspectively 
coherent  semi-Boolean algebras, associated with each associative ortho- 
algebra. 

5. S U M M A R Y  

While the bulk o f  the work done thus far on quan tum logics has dealt 
with quan tum proposi t ional  logics, the current  work on quan tum event 
logics offers a new richness to the theory and we expect that  most  o f  the 
work done  in the future will include this rapidly expanding area o f  quan tum 
logics. Thus,  it is impor tant  to unders tand quan tum event logics and the 
role they play. We have compared  the two major  areas o f  work in quan tum 
event logics, and shown how this work fits in with the earlier work on 
quan tum proposi t ional  logics. 
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